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1 Overview

The data provided here was obtained from direct numerical simulations of forced isotropic turbulence on

a 32,7683 periodic grid, using a highly-efficient pseudo-spectral parallel code. The simulations were per-

formed on the world’s first exascale computer, called Frontier, at Oak Ridge Leadership Computing Facility.

The details of the GPU algorithm have been documented in detail in Yeung et al. (2025). The first scientific

results were presented by the Georgia Tech group at the 2023 and 2024 APS Fluid Dynamics Meetings.

Time integration uses second-order Runge-Kutta. The simulation is de-aliased using phase-shifting and

truncation. Energy is injected by keeping the energy density in the lowest wavenumber modes prescribed

following the approach of (Donzis and Yeung, 2010). A single frame of data, which includes the 3 compo-

nents of the velocity vector and the pressure, are generated and written in files that can be accessed directly

by the database services (zarr format on a ceph cluster). The dataset is approximately 1/2 Petabytes in size.

2 Pseudo-spectral simulation of forced isotropic turbulence

Direct numerical simulations were performed of unsteady and 3D fluctuating velocity fields governed by the

incompressible Navier Stokes equations with numerical forcing:

∂u/∂t +(u ·∇)u =−(1/ρ)∇p+ν∇
2u+ f. (1)

As in Rogallo (1981) the numerical solution is advanced in time in wavenumber space, with exact inte-

grating factor for the viscous terms, and a combination of phase shifting and truncation for the control of

aliasing errors. The forcing scheme consists of adjusting the velocity Fourier coefficients in the lowest three

wavenumber shells, such that values of the energy spectrum function in these shells are consistent with long-

time averages from simulations with stochastic forcing. The solution domain was divided in two directions,

which allows use of more than N parallel processes for an N3 grid. Much effort was made to optimize data

movement in the form of communication calls required for distributed-memory parallelism. Memory parity

between the CPU and GPU on Frontier allows practically all operations, including both computation and
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communication, to be performed on the GPU, thus avoiding any overhead associated with data movement

between CPU and GPU. The code is demonstrated to achieve high scalability despite some inevitable lim-

itations associated with smaller message sizes when pushing the limits of the communication network in

simulations at near full-system size.

3 Simulation strategy: successive grid refinement and viscosity reduction

The primary objective of the simulations was to study small-scale physics accurately at high Reynolds

number at the maximum grid resolution that can fit into the GPU memory of the exascale machine available.

To make the best use of available resources, Georgia Tech group has devised a strategy of successive grid

refinement which helps reduce resources needed to reach a state of statistical stationarity at high Reynolds

numbers. The approach is essentially to start from a prior simulation at modest Reynolds number, and to

reduce the fluid viscosity through a series of stages of successive grid refinements, while keeping the forcing

parameters that govern the large scales the same. The viscosity is adjusted at each stage in a manner that

results in a targeted ratio of grid spacing to Kolmogorov scales throughout this process. Since the small

scales evolve on short time scales, a new stationary state at higher Reynolds number is usually reached

within no more than 40-50 Kolmogorov time scales instead of multiple large-eddy turnover times which

would be very expensive. At each Reynolds number we reach stationary state at modest resolution in time

and space, but then reduce both time step and grid spacing for higher accuracy at readily manageable cost.

Several initial snapshots at modest Reynolds number are taken through this process, leading to multiple

short but highly-resolved simulations in the manner proposed by Yeung and Ravikumar (2020).

4 Description of field

The main statistical features of the final field stored in the database, computed over the entire stored snapshot

(using Fourier-space representation), are listed in Table 2.

A radial kinetic energy spectrum and compensated spectrum for the snapshot, computed from the snap-

shot (in Fourier space) is shown in Fig. 1 and 2. The radial spectrum displays a small intermittency correc-

tion to the -5/3 scaling and shows indications of the bottleneck effect.

5 Data storage

We develop a method for storing data using chunked Zarr files (a scalable, compressible, and versatile array

storage format (https://zarr.dev/)). This pivot to zarr files resulted in several benefits. First, it has simplified

the processing code, making it more maintainable. Second, processing times became significantly faster

with zarr files due to fewer distinct I/O operations when reading data. Third, adopting Zarr files facilitates a

smoother and faster transition to Ceph (an object storage system) enhancing scalability and efficiency.

The 327683 dataset is stored using the Zarr format on a ceph cluster. The dataset (one snapshot) is

organized within a single Zarr store, containing separate ‘velocity’ and ‘pressure’ directories for storing the
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Table 1: Simulation parameters and resulting statistics for snapshot 1:

Quantity Snapshot 1

Domain 2π×2π×2π

Grid 32,768×32,768×32,768

Viscosity ν 1.10555×10−5

RMS velocities u′, v′, w′ 1.3969, 1.6692, 1.6405

Kinetic energy 3.7143

Dissipation rate ε 1.2739

Resolution, kmaxη 2.7875

Kolmogorov length (ν3/ε)1/4 1.8047×10−4

Kolmogorov velocity (νε)1/4 6.1261×10−2

Kolmogorov time-scale (ν/ε)1/2 2.9459×10−3

u integral length scales Lux, Luy, Luz 0.95576, 0.47324, 0.51600

v integral length scales Lvx, Lvy, Lvz 0.49598, 1.5480, 0.47430

w integral length scales Lwx, Lwy, Lwz 0.60514, 1.0460, 1.6205

Large eddy turnover times Lux/u′, Lvy/v′, Lwz/w′ 0.68422, 0.92743, 0.98778

Integral scale Reynolds # Re = Luxu′/ν, Lvyv′/ν, Lwzw′/ν 1.2076×105, 2.3372×105, 2.4046×105

Taylor microscales λu,v,w = (u′,v′,w′)× (15ν/ε)1/2 0.015936, 0.019046, 0.018719

Taylor scale Reynolds number 2,556

corresponding velocity and pressure fields. The data is further partitioned into chunks of size 643, which

serve as the fundamental storage units and are arranged in Cartesian order (k, j, i). Consequently, the velocity

and pressure directories each contain 3×512 subdirectories, with each subdirectory storing a corresponding

643 chunk in (k, j, i) orders.

6 Sample statistics from physical space data accessible via getdata tools:

As reference for users, we provide below some statistical features that can be computed efficiently using

getdata functions from data in physical space. The statistics are computed over 64 equally distributed lines

along x at every ∆yl and ∆zl intervals along the y and z axes (and similarly along the other two axes). As an

example, for lines parallel to the x-direction, the coordinates of all the points for the data are generated as

follows:

The coordinates for sampling lines are generated as shown in the snapshot in Fig. 3, where points array

stores 3×64 lines that are perpendicular to yz−,xz−,xy− planes. The totality of lines is shown in Fig. 4.
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Figure 1: Radial 3D energy spectrum computed for the stored snapshot. The dashed line shows the expected
Kolmogorov inertial range line E(k) = 1.6× ε2/3 k−5/3.

The one-dimensional longitudinal energy spectrum E11(k) (computed as the average of the longitudinal

spectra in each direction) is shown in Fig. 5 (solid blue line). The result is compared with the Kolmogorov

spectrum E11 = (18/55)×CK × ε2/3 k−5/3
1 (dashed line) using CK = 1.6. In Fig. 5 (solid orange line)

we also show the transverse spectrum (averaged in the 2 transverse directions) and compare it to E22 =

(4/3)× (18/55)×CK × ε2/3 k−5/3
1 . In Fig. 6, we show the compensated 1D longitudinal and transverse

energy spectrum compared to coefficients (18/55)× 1.6 and (4/3)× (18/55)× 1.6. The energy spectra

and the compensated spectra in Kolmogorov units are shown in Fig. 7 and 8. As expected, 1D spectra also

display a small intermittency correction and indications of the bottleneck effect.

The statistics of the various components of the velocity gradient (computed using the getdata function

with the gradient spatial operator and the spline spatial operator, m2q8, option) are shown in Table 2. These

parameters are averaged over the 3×64×32,768 points on the lines with equal distance and parallel to the

x,y,z directions used to compute the spectra shown. As such, they cannot be considered to be equivalent to

those computed over all points, or fully statistically converged, but a good reference for potential users.

Finally, using these gradients, a check on the divergence-free condition using these gradient opera-

tors is performed by evaluating the quantity ⟨(∂u/∂x+ ∂v/+ ∂w/∂z)2⟩ and comparing it to ⟨(∂u/∂x)2⟩+
⟨(∂v/∂y)2⟩+ ⟨(∂w/∂z)2⟩.

Note that the divergence-free condition in the simulation is enforced based on the spectral representation

of the derivatives on horizontal planes while the gradients used in this analysis are based on finite differenc-

ing of various orders or splines as required for more efficient spatially localized data usage. Therefore, when

evaluating the divergence using these spatially more localized derivative operators, a non-zero divergence
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Figure 2: Compensated radial 3D energy spectrum computed for the stored snapshot. The dashed line shows
the expected Kolmogorov coefficient Ck = 1.6.

should be expected. However, since the data are well resolved (kmaxη2.78) the error is expected to be small.

Indeed, averaging over the 3× 64× 32,768 points, we obtain ⟨(∂u/∂x+ ∂v/∂y+ ∂w/∂z)2⟩ = 1.84. Com-

pared to (e.g.) ⟨(∂u/∂x)2⟩+⟨(∂v/∂y)2⟩+⟨(∂w/∂z)2⟩= 23824.88 or any of the individual gradient variances

shown in Table 2 it is quite small and consistent with an error in individual gradient magnitudes of less than

1%.
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Figure 3: Python script to generate 64×3 lines in 3D physical space.
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Figure 4: Lines (in 3D physical space) used to generate 1D energy spectra and evaluate velocity gradient
statistics from a subset of the full data.

Table 2: Velocity gradient statistics from 3×64 lines (192× 32,768 = 6,291,456 sample points, generated
using the code shown in Fig. 3). Since this sample represents only a tiny (0.1788× 10−6) fraction of all
points in the domain, these values cannot be considered to be statistically converged moments.

Gradient component Variance Skewness factor Flatness factor

∂u/∂x 7947.94 -0.7463 15.5863

∂u/∂y 15890.80 -0.0611 24.8250

∂u/∂z 15815.43 0.0029 22.4515

∂v/∂x 16026.68 -0.1300 29.1940

∂v/∂y 7940.95 -0.7540 16.2161

∂v/∂z 15826.85 0.0863 25.2166

∂w/∂x 15934.09 0.0898 24.1140

∂w/∂y 15826.62 0.1914 27.8905

∂w/∂z 7635.96 -0.7453 15.7545
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Figure 5: Longitudinal and transverse one-dimensional energy spectra computed from the 3 × 64 reg-
ularly spaced lines in the 3 Cartesian directions (Fig. 4). The dashed and dotted lines show the ex-
pected Kolmogorov inertial range longitudinal and transverse spectra (E11 = (18/55)×CK × ε2/3 k−5/3 and
E22 = (4/3)(18/55)×CK × ε2/3 k−5/3, respectively, with CK = 1.6).

Figure 6: Same as Fig. 5 for compensated spectra.
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Figure 7: Same as Fig. 5 in Kolmogorov units.

Figure 8: Same as Fig. 6 in Kolmogorov units.
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